Solutions to Question Sheet 4, Continuity I v1 2019-20

Continuous functions

Six examples of showing a function is continuous.

1. Let
x> —2r—15

f(@) = x+3

T F# —3.
How should f(—3) be defined so that f is continuous at —37

Solution Recall the definition that f is continuous at a iff lim,_,, f(z) =

f(a). Since

> =2 —15 (v +3)(x—5)

=zr—5
T+ 3 T+ 3 .

for all x # —3, we have

2 _2x—15
T lim (2 5) = 8.
z——3 T+ 3 x——3

Thus choose f(—3) = —8.

2. Prove, by verifying the ¢-¢ definition that h(x) = |z| is continuous at
x = 0.
Deduce that h is continuous on R.

(You need not verify the definition for x # 0, instead quote results from
the lecture notes.)

Solution We first prove that h is continuous at 0 by verifying the -6
definition. Let € > 0 be given, choose § = ¢. and assume |z — 0| < 4.
Then

[h(x) = 0] = |Jx] = 0] = |z| <0 =¢

as required.



Note If you had not been asked to verify the -9 definition you could
have examined the two one-sided limits

lim A(x) = lim |z| = lim x =0,
z—0+ z—0+ z—0+

Since both limits exist and are equal we can say lim,_,o h(z) = 0. And
since 0 = h(0) we have lim,_,o h(x) = h(0), which is the definition that
h is continuous at x = 0. End of Note

To show that |z| is continuous on all of R it remains to prove it is
continuous at all x # 0. The question explicitly says that you are
not required to verify the €-6 definition for such z. Instead we quote
results from the course.

If £ > 0 then h(z) = |z| = 2, a polynomial of z, so h(z) is continuous.

If < 0 then h(z) = |z| = —z, a polynomial of z, so h(x) is again
continuous.

Thus h is continuous for all z € R, i.e. it is continuous on R.

3. Prove, by verifying the -6 definition that

i) the function f(z) = 22 is continuous on R,

Hint Look back at Question 2 on Question Sheet 1 and replace
a = 2 seen there by any a € R.

ii) the function g(x) = /x is continuous on (0, 00).

Hint Look back at Question 11 on Question Sheet 1 and replace
the a = 9 seen there by any a > 0.

W) ?4+zx forx<1
x =
ve+3 forx>1,

iii) the function

1s continuous at z = 1.

Hint Verify the ¢ -6 definitions of both one-sided limits separately
at x = 1.



iv) the function
1

2 +1

is continuous on R.

Solution i) Rough Work. Let a € R be given. Assume | —a| < §
(remember, that when looking at continuity we do not have to exclude
x = a). Consider

]f(a:)—f(a)\:’xQ—aQ‘:]ac—aHa:+a\<(5\:U+a\.

Recall the idea that if z is ‘close’ to a then |z 4 a| should be ‘close’ to
2]al, in particular |z + a| will not be much larger than 2 |a|. A way
of implementing this idea is to assume |z — a| is small and use this to
estimate |x + a| by rewriting this so we see x — a, i.e. as

|z +a| = |(x —a) + 2a.

In detail, assume 6 < 1 in which case |x — a| < 1. Then
lt+a|l = |(xr—a)+ 2a
< |z —al+2]a] by triangle inequality
< 14 2]al.
(This is where we see that |z + a| is not be much larger than 2 |a|.)

Thus |f(z) — f(a)] < d(1+ 2]a|]) which we can ensure is < ¢ if we
demand 6 < e/(1+2]al).

End of Rough Work.
Note the most commonly seen error here is the following:
O<|lr—a|<di<l = —-l<zr—-a<l
= 2a—-1<zx+a<2a+1

= |z+a| <|2a+1].

Yet this is wrong. What would this be saying if a = —1/27 What is
wrong with this sequence of implications? End of Note



Solution Let a € R and € > 0 be given. Choose

13
0 = mi 1, — .
m”‘(’1+2|a|)

Assume |z — 0] < §. Then
|f(z) = f(a)] = |r—all|z+ad
= |z —a||(x —a)+ 24|
< |z —al(lz—al+2]al) by triangle inequality,

< d(1+2]al) since |[r —a| < <1

€
- 1 <
< (1+2|a‘)(1~|—2\al) since § < ¢e/(1+ 2|al)

= ¢&.

Hence we have verified the -9 definition that f is continuous at a.

True for all @ € R means that f is continuous on R.

ii) If you look back at Question 11 on Sheet 1 you see that to verify the
g-0 definition of lim, 9 /z = 3 we required § < 9. When replacing 9
by any a > 0 we look at z satisfying |z — a| < ¢, i.e. © € (a — §,a + 9).
If a — § < 0 then the interval (a — d,a + ¢) will contain negative x yet
for v/ to be defined we require x > 0. Hence we require a — 0 > 0, i.e.
0 < a.

Let @ > 0 and € > 0 be given. Choose § = min (a,e+/a). Assume
0<|z—al<od.

Then —) < x—a < d. Since 0 < a the lower bound becomes —a < z—a,
i.e. x> 0 and thus g(x) = \/z is well-defined.



We start with a “trick” seen in Sheet 1, based on the difference of
squares,

lg(x) — g(a)] = |Va—Va|= (V_—\/E)—Egigi

| .
= < having used v/z > 0,
Vitva~ va g used Vo
)
< —§ia since 6 < ev/a,
a a
= €.

Hence we have verified the -6 definition of
lim g(z) = g(a),

i.e. that ¢ is continuous at a.
True for all @ > 0 means that g is continuous on (0, c0).

Note A not uncommon error was to misinterpret the hint and start
with
’\/—_ \/5| _ |a;1/4 _ x1/4| }xl/‘l —|—x1/4}.

Unfortunately this makes everything more complicated rather than sim-
pler. End of Note

iii) Because f is given by different formula for z > 1 and = < 1 we need
to examine the two one-sided limits and show that

lim f(z) = lim f(x)= f(1)=2.

r—1— r—14

Let € > 0 be given.

For the limit from below, i.e. as z — 1—. Choose § = min (1,£/3).
Assume 1 — 0 < x < 1.

Then § <1 implies 0 < x < 1 and thus |z + 2| < 3. Therefore
|f(x) =2 = }x2+x—2}:|(x+2)(x—1)|

< 3yx—1\§35§3(§)=5.
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Thus we have verified the -9 definition of the one-sided limit

lim f(x)=2.

r—1—

For the limit from above, i.e. as x — 14. Choose § = . Assume
1 <x <1+ 0, which will be used below as z — 1 < §.

Then using a “trick” seen in the solution to the previous question,

B B _ vVo+3+2
@) -2 = Ve+3—2=(Va+3 2>x;§?§:§

(x+3)—-4 -1
VI+3+2 VJrtrs+2
< z—1, (1)

using v +3 42 > 1 (and x — 1 positive). Hence

If(z) =2/ <z —-1<d=c¢c.

Thus we have verified the -9 definition of the one-sided limit

lim f(x)=2.

r—1+4

Note It would be reasonable, since x > 1, to say vz +3 + 2 > 4 and

thus
—1 r—1 4

x
< < —.
vr+3+2 4 4

You would then choose § = 4. End of Note




iv) Let a € R be given.

Rough Work.
Consider
1 1 2 _ .2
_ = a X < |Z'2 . CL2| :
I1+22 1+a? (14 22)(1+a?)
having used 1 + 2% > 1, 1 +a?> > 1 and |a? — 2°| = |2* — ¢?|. But now

we are back in part (i) where we are trying to show that |z? — a?| < e.
Thus choose ¢ as we did there.

End of Rough work

Solution Let a € R and € > 0 be given. Choose

13
0 = mi 1. — .
mm(’1+2|a|)

Assume 0 < |z — a| < 0. Then, starting as in the rough work,

‘ ! ! |2* — a®| = |z — a| |z + a

1+22 1+aq2

= |z —a||(x —a)+ 2da

< |z —al(|Jz —al +2]al) by triangle inequality,
< Jr—al(1+42]al) since |z —a| <0 <1
£
< — ) (142
(155 ) 1+ 20

since |x —a| <6 <e/(1+2]al)

Hence we have verified the e-§ definition that 1/(1 + 2?) is continuous
at a.

True for all @ € R means that 1/(1 + 2?) is continuous on R.



4. Are the following functions continuous on the domains given or not?

Either prove that they are continuous by using the appropriate Conti-
nuity Rules, or show they are not.

i)

T+ 2
f(x):xQ—i—l on R.
ii)
() 3+ 2z
X g
g 21

firstly on [—1/2,1/2], secondly on [—2,2].

iii)
B 24 —2 on
M) = (2 +1)(x—1) R

iv)
r+2 ifx<-—1
jlx) =  if —1<z<1
r—2 ifx>1.

sinz £ ()
k(zy=1¢ °
1 xz = 0.
vi)
1—cosz
_ 0
l(x) = 2 T7

1 x = 0.

Solution i) The given function f is a quotient of polynomials, i.e. a
rational function. The polynomials are continuous everywhere. Hence
f is continuous wherever it is defined. The denominator, % + 1, is
never zero for x € R, so f is defined everywhere. Hence f is continuous
everywhere.

ii) The argument is as in part i). But now the denominator is x* — 1
which is zero at x = +1. So

e ¢ is well-defined throughout [—1/2,1/2] and so ¢ is continuous on
[—1/2,1/2], but



e ¢ is not defined everywhere in [—2,2] and, in fact, g is continuous
on [—2,2] except at —1 and 1.

iii) As written, h is defined everywhere except at x = 1. So h is
continuous on R\ {1}.

Note When x = 1 the numerator is also 0. In fact 22 + 2 — 2 =
(x 4+ 2) (x — 1) and thus

(z+2)(x—1) x+2

M) = i @=1) 211

In this way we could extend the definition of h to all of R but we would
then have a different function.

iv) j(z) is continuous on R except possibly at x = —1 and = = 1.
At x = —1 the two one-sided limits are
AR = I =1
. . _ . 2 _

Since the two one-sided limits exist and are equal we deduce that
lim, ., j(z) = 1. Yet 1 = j(—1) so lim,,_; j(x) = j(—1) which is
the definition that j is continuous at x = —1.

At x = 1 the two one-sided limits are

. . o . 2
Apte) = B =1
Sp @) = Jlip -2 =-1

Different one-sided limits means that lim, ,; j(z) does not exist and
so cannot equal j(1). Thus j is not continuous at =z = 1.

v) If © # 0 then k(z) = (sinx) /x. We have shown that sinx is con-
tinuous, as is z, for  # 0. Hence k (x) is continuous for x # 0 by the
Quotient Rule.

If x = 0 we have i
lim k(z) = lim ST 1,
z—0 z—=0 T




a result seen in the lectures. By definition, k(0) = 1, thus lim, ¢ k(x) =
k(0) and so k is continuous at x = 0.

Hence k is continuous on R.

vi) If  # 0 then ¢ (z) = (1 — cosz) /x?. We have shown that cosz is
continuous, as is 2%, for x # 0. Hence ¢ (z) is continuous for x # 0 by
the Quotient Rule.

If x = 0 we have

1—
lim ¢ (z) = lim — 2%

1
x—0 x—0 1‘2 2 ’

aresult seen in the lectures. By definition, ¢ (0) = 1, thus lim, ¢ ¢ (x) #
¢(0) and so ¢ is not continuous at x = 0.

Hence ¢ is not continuous on R.

i) Prove, by verifying the definition, that cosz is continuous on R.

Hint Make use of cos (z +y) = cosz cosy — sinxsiny, valid for
all z,y € R.

ii) Prove that tanx is continuous for all x # 7 /2 + k7, k € Z.

Solution i) Let a € R be given. We know that cosz is continuous
at a if, and only if, cos (z + a) is continuous at = 0. Thus we need
examine

lim cos (z +a) = lim (coszcosa —sinxsina)
z—0 z—0

by the assumption in the question,

= (lim Cos x) cosa — <1im sin x) sin a
x—0 x—0
by the Product and Sum Rules for limits,
= 1xcosa—0xsina

= cosa=cos(0+a).

Thus cos (z + a) is continuous at x = 0 and hence cosz is continuous
at a. True for all @ € R means cos is continuous on R.
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ii) Let a # 7/2 + kr for any k € Z be given. Then

i . sinx lim,_,,sinx
lim tan z = lim = =
z—a z—a cosy  lim,_,, cosT

by the Limit Law for Quotients. This is allowable since both lim-
its exist (because sin and cos are everywhere continuous) and further
lim, ,, cosz = cosa # 0 since a # 7/2 + kx for any k € Z. Thus

. lim,_,,sinx  sina
limtanz = — = = tana.
z—a lim,_,,cosxz  cosa

Since the limit of tan at a equals the value of tan at a we have verified
the definition that tan is continuous at a. Yet a was arbitrary subject
to being not of the form 7/2 4+ kr for any k € Z, therefore tan is
continuous for all x # 7/2 + kx for any k € Z.

Show that the hyperbolic functions sinh x, coshz and tanh z are con-
tinuous on R.

Solution Recall that

) et —e™® et +e’ " et —e™®
simhr = ——, coshr=—— and tanhz=———7+—+.
2 2 er*+e*

We know that e* is continuous on R as is thus e™®, either by the
Quotient Rule since e = 1/e* and e” # 0 or by the Composition
Rule x — —x +— e™®. Thus sinh x and cosh x are continuous on R by
the Sum Rule.

For tanh x we use the Quotient Rule observing that e* 4+ e~ is never
ZEro.

Composite Rule

7.

i) State the Composite Rule for functions.

. sin x
lim exp .
z—0 x

Evaluate

11



ii) State the Composite Rule for continuous functions.

Prove that

T+ 2
2+ 1

is continuous on R.

Solution Composite Rule for functions. Assume that g is defined
on a deleted neighbourhood of a € R and lim,,,g(x) = L exists.
Assume that f is defined on a neighbourhood of L and is continuous
there. Then

tim f(g (2)) = f(lim g () (2)
i) Let -
g(z)= sn;x and  f(z) =exp(z) = €”.

Then ¢ is defined on R\ {0} and lim, ,o g (z) exists, with value 1.
Further f is defined on all of R and is continuous at 1 = lim,_,o g ().
Thus we can apply the Composite Rule for functions to say

lim exp (Sij””) — tim f(9(2)) = f(lim g (@)

= exp (lim sm:l:) = exp (1)

z—0

= €.

ii) Composite Rule for Continuous functions. Assume that ¢
is defined on a neighbourhood of @ € R and is continuous there and
assume that f is defined on a neighbourhood of ¢ (a) and is continuous
there, then f o ¢ is continuous at a.
Let

T+ 2

= —-—— d pu— .
g(0)= = and  f(@)=la]
We have seen in Questions 4i and 2 on that both g and f are continuous
on all of R. Hence by the Composite Rule for continuous functions we

deduce that

f(g (x)) =

T+ 2
22 +1

is continuous at every a € R, i.e. is continuous on R.
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