
Solutions to Question Sheet 4, Continuity I v1 2019-20

Continuous functions

Six examples of showing a function is continuous.

1. Let

f(x) =
x2 − 2x− 15

x+ 3
, x 6= −3.

How should f(−3) be defined so that f is continuous at −3?

Solution Recall the definition that f is continuous at a iff limx→a f(x) =
f(a). Since

x2 − 2x− 15

x+ 3
=

(x+ 3) (x− 5)

x+ 3
= x− 5

for all x 6= −3, we have

lim
x→−3

x2 − 2x− 15

x+ 3
= lim

x→−3
(x− 5) = −8.

Thus choose f(−3) = −8.

2. Prove, by verifying the ε - δ definition that h(x) = |x| is continuous at
x = 0.

Deduce that h is continuous on R.

(You need not verify the definition for x 6= 0, instead quote results from
the lecture notes.)

Solution We first prove that h is continuous at 0 by verifying the ε - δ
definition. Let ε > 0 be given, choose δ = ε. and assume |x− 0| < δ.
Then

|h(x)− 0| = ||x| − 0| = |x| < δ = ε

as required.
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Note If you had not been asked to verify the ε - δ definition you could
have examined the two one-sided limits

lim
x→0+

h(x) = lim
x→0+

|x| = lim
x→0+

x = 0,

lim
x→0−

h(x) = lim
x→0−

|x| = lim
x→0+

(−x) = 0.

Since both limits exist and are equal we can say limx→0 h(x) = 0. And
since 0 = h(0) we have limx→0 h(x) = h(0), which is the definition that
h is continuous at x = 0. End of Note

To show that |x| is continuous on all of R it remains to prove it is
continuous at all x 6= 0. The question explicitly says that you are
not required to verify the ε - δ definition for such x. Instead we quote
results from the course.

If x > 0 then h(x) = |x| = x, a polynomial of x, so h(x) is continuous.

If x < 0 then h(x) = |x| = −x, a polynomial of x, so h(x) is again
continuous.

Thus h is continuous for all x ∈ R, i.e. it is continuous on R.

3. Prove, by verifying the ε - δ definition that

i) the function f(x) = x2 is continuous on R,

Hint Look back at Question 2 on Question Sheet 1 and replace
a = 2 seen there by any a ∈ R.

ii) the function g(x) =
√
x is continuous on (0,∞) .

Hint Look back at Question 11 on Question Sheet 1 and replace
the a = 9 seen there by any a > 0.

iii) the function

h(x) =

{

x2 + x for x ≤ 1
√
x+ 3 for x > 1,

is continuous at x = 1.

Hint Verify the ε - δ definitions of both one-sided limits separately
at x = 1.
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iv) the function
1

x2 + 1

is continuous on R.

Solution i) Rough Work. Let a ∈ R be given. Assume |x− a| < δ
(remember, that when looking at continuity we do not have to exclude
x = a). Consider

|f(x)− f(a)| =
∣

∣x2 − a2
∣

∣ = |x− a| |x+ a| < δ |x+ a| .

Recall the idea that if x is ‘close’ to a then |x+ a| should be ‘close’ to
2 |a| , in particular |x+ a| will not be much larger than 2 |a|. A way
of implementing this idea is to assume |x− a| is small and use this to
estimate |x+ a| by rewriting this so we see x− a, i.e. as

|x+ a| = |(x− a) + 2a| .

In detail, assume δ ≤ 1 in which case |x− a| ≤ 1. Then

|x+ a| = |(x− a) + 2a|
≤ |x− a|+ 2 |a| by triangle inequality

≤ 1 + 2 |a| .

(This is where we see that |x+ a| is not be much larger than 2 |a|.)
Thus |f(x)− f(a)| < δ (1 + 2 |a|) which we can ensure is < ε if we
demand δ ≤ ε/(1 + 2 |a|) .

End of Rough Work.

Note the most commonly seen error here is the following:

0 < |x− a| < δ ≤ 1 =⇒ −1 < x− a < 1

=⇒ 2a− 1 < x+ a < 2a+ 1

=⇒ |x+ a| < |2a+ 1| .

Yet this is wrong. What would this be saying if a = −1/2? What is
wrong with this sequence of implications? End of Note
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Solution Let a ∈ R and ε > 0 be given. Choose

δ = min

(

1,
ε

1 + 2 |a|

)

.

Assume |x− 0| < δ. Then

|f(x)− f(a)| = |x− a| |x+ a|

= |x− a| |(x− a) + 2a|

≤ |x− a| (|x− a|+ 2 |a|) by triangle inequality,

< δ (1 + 2 |a|) since |x− a| < δ ≤ 1

<

(

ε

1 + 2 |a|

)

(1 + 2 |a|) since δ ≤ ε/(1 + 2 |a|)

= ε.

Hence we have verified the ε - δ definition that f is continuous at a.

True for all a ∈ R means that f is continuous on R.

ii) If you look back at Question 11 on Sheet 1 you see that to verify the
ε - δ definition of limx→9

√
x = 3 we required δ ≤ 9. When replacing 9

by any a > 0 we look at x satisfying |x− a| < δ, i.e. x ∈ (a− δ, a+ δ).
If a− δ < 0 then the interval (a− δ, a+ δ) will contain negative x yet
for

√
x to be defined we require x ≥ 0. Hence we require a− δ ≥ 0, i.e.

δ ≤ a.

Let a > 0 and ε > 0 be given. Choose δ = min (a, ε
√
a). Assume

0 < |x− a| < δ.

Then −δ < x−a < δ. Since δ ≤ a the lower bound becomes −a < x−a,
i.e. x > 0 and thus g(x) =

√
x is well-defined.
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We start with a “trick” seen in Sheet 1, based on the difference of
squares,

|g(x)− g(a)| =
∣

∣

√
x−

√
a
∣

∣ =

∣

∣

∣

∣

(√
x−

√
a
) (

√
x+

√
a)

(
√
x+

√
a)

∣

∣

∣

∣

=
|x− a|√
x+

√
a
<

|x− a|√
a

having used
√
x > 0,

<
δ√
a
≤ ε

√
a√
a

since δ ≤ ε
√
a,

= ε.

Hence we have verified the ε - δ definition of

lim
x→a

g(x) = g(a) ,

i.e. that g is continuous at a.

True for all a > 0 means that g is continuous on (0,∞).

Note A not uncommon error was to misinterpret the hint and start
with

∣

∣

√
x−

√
a
∣

∣ =
∣

∣x1/4 − x1/4
∣

∣

∣

∣x1/4 + x1/4
∣

∣ .

Unfortunately this makes everything more complicated rather than sim-
pler. End of Note

iii) Because f is given by different formula for x > 1 and x < 1 we need
to examine the two one-sided limits and show that

lim
x→1−

f(x) = lim
x→1+

f(x) = f(1) = 2.

Let ε > 0 be given.

For the limit from below, i.e. as x → 1−. Choose δ = min (1, ε/3).
Assume 1− δ < x < 1.

Then δ ≤ 1 implies 0 < x < 1 and thus |x+ 2| < 3. Therefore

|f(x)− 2| =
∣

∣x2 + x− 2
∣

∣ = |(x+ 2) (x− 1)|

≤ 3 |x− 1| ≤ 3δ ≤ 3
(ε

3

)

= ε.
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Thus we have verified the ε - δ definition of the one-sided limit

lim
x→1−

f(x) = 2.

For the limit from above, i.e. as x → 1+. Choose δ = ε. Assume
1 < x < 1 + δ, which will be used below as x− 1 < δ.

Then using a “trick” seen in the solution to the previous question,

|f(x)− 2| =
√
x+ 3− 2 =

(√
x+ 3− 2

)

×
√
x+ 3 + 2√
x+ 3 + 2

=
(x+ 3)− 4√
x+ 3 + 2

=
x− 1√
x+ 3 + 2

≤ x− 1, (1)

using
√
x+ 3 + 2 ≥ 1 (and x− 1 positive). Hence

|f(x)− 2| ≤ x− 1 < δ = ε.

Thus we have verified the ε - δ definition of the one-sided limit

lim
x→1+

f(x) = 2.

Note It would be reasonable, since x > 1, to say
√
x+ 3 + 2 > 4 and

thus
x− 1√
x+ 3 + 2

<
x− 1

4
<

δ

4
.

You would then choose δ = 4ε. End of Note
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iv) Let a ∈ R be given.

Rough Work.

Consider
∣

∣

∣

∣

1

1 + x2
− 1

1 + a2

∣

∣

∣

∣

=

∣

∣

∣

∣

a2 − x2

(1 + x2) (1 + a2)

∣

∣

∣

∣

≤
∣

∣x2 − a2
∣

∣ ,

having used 1 + x2 ≥ 1, 1 + a2 ≥ 1 and |a2 − x2| = |x2 − a2|. But now
we are back in part (i) where we are trying to show that |x2 − a2| < ε.
Thus choose δ as we did there.

End of Rough work

Solution Let a ∈ R and ε > 0 be given. Choose

δ = min

(

1,
ε

1 + 2 |a|

)

.

Assume 0 < |x− a| < δ. Then, starting as in the rough work,

∣

∣

∣

∣

1

1 + x2
− 1

1 + a2

∣

∣

∣

∣

≤
∣

∣x2 − a2
∣

∣ = |x− a| |x+ a|

= |x− a| |(x− a) + 2a|

≤ |x− a| (|x− a|+ 2 |a|) by triangle inequality,

< |x− a| (1 + 2 |a|) since |x− a| < δ ≤ 1

<

(

ε

1 + 2 |a|

)

(1 + 2 |a|)

since |x− a| < δ ≤ ε/(1 + 2 |a|)

= ε.

Hence we have verified the ε - δ definition that 1/(1 + x2) is continuous
at a.

True for all a ∈ R means that 1/(1 + x2) is continuous on R.
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4. Are the following functions continuous on the domains given or not?

Either prove that they are continuous by using the appropriate Conti-

nuity Rules, or show they are not.

i)

f(x) =
x+ 2

x2 + 1
on R.

ii)

g(x) =
3 + 2x

x2 − 1
,

firstly on [−1/2, 1/2], secondly on [−2, 2] .

iii)

h(x) =
x2 + x− 2

(x2 + 1) (x− 1)
on R.

iv)

j(x) =











x+ 2 if x < −1

x2 if − 1 ≤ x ≤ 1

x− 2 if x > 1.

.

v)

k (x) =

{

sinx
x

x 6= 0

1 x = 0.
.

vi)

ℓ (x) =







1− cos x

x2
x 6= 0

1 x = 0.
.

Solution i) The given function f is a quotient of polynomials, i.e. a
rational function. The polynomials are continuous everywhere. Hence
f is continuous wherever it is defined. The denominator, x2 + 1, is
never zero for x ∈ R, so f is defined everywhere. Hence f is continuous
everywhere.

ii) The argument is as in part i). But now the denominator is x2 − 1
which is zero at x = ±1. So

• g is well-defined throughout [−1/2, 1/2] and so g is continuous on
[−1/2, 1/2], but
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• g is not defined everywhere in [−2, 2] and, in fact, g is continuous
on [−2, 2] except at −1 and 1.

iii) As written, h is defined everywhere except at x = 1. So h is
continuous on R\{1}.

Note When x = 1 the numerator is also 0. In fact x2 + x − 2 =
(x+ 2) (x− 1) and thus

h(x) =
(x+ 2) (x− 1)

(x2 + 1) (x− 1)
=

x+ 2

x2 + 1
.

In this way we could extend the definition of h to all of R but we would
then have a different function.

iv) j(x) is continuous on R except possibly at x = −1 and x = 1.

At x = −1 the two one-sided limits are

lim
x→−1−

j(x) = lim
x→−1−

(x+ 2) = 1,

lim
x→−1+

j(x) = lim
x→−1+

x2 = 1.

Since the two one-sided limits exist and are equal we deduce that
limx→−1 j(x) = 1. Yet 1 = j(−1) so limx→−1 j(x) = j(−1) which is
the definition that j is continuous at x = −1.

At x = 1 the two one-sided limits are

lim
x→1−

j(x) = lim
x→1−

x2 = 1,

lim
x→1+

j(x) = lim
x→1+

(x− 2) = −1.

Different one-sided limits means that limx→1 j(x) does not exist and
so cannot equal j(1). Thus j is not continuous at x = 1.

v) If x 6= 0 then k(x) = (sin x) /x. We have shown that sin x is con-
tinuous, as is x, for x 6= 0. Hence k (x) is continuous for x 6= 0 by the
Quotient Rule.

If x = 0 we have

lim
x→0

k(x) = lim
x→0

sin x

x
= 1,
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a result seen in the lectures. By definition, k(0) = 1, thus limx→0 k(x) =
k(0) and so k is continuous at x = 0.

Hence k is continuous on R.

vi) If x 6= 0 then ℓ (x) = (1− cos x) /x2. We have shown that cosx is
continuous, as is x2, for x 6= 0. Hence ℓ (x) is continuous for x 6= 0 by
the Quotient Rule.

If x = 0 we have

lim
x→0

ℓ (x) = lim
x→0

1− cos x

x2
=

1

2
,

a result seen in the lectures. By definition, ℓ (0) = 1, thus limx→0 ℓ (x) 6=
ℓ (0) and so ℓ is not continuous at x = 0.

Hence ℓ is not continuous on R.

5. i) Prove, by verifying the definition, that cosx is continuous on R.

Hint Make use of cos (x+ y) = cosx cos y − sin x sin y, valid for
all x, y ∈ R.

ii) Prove that tan x is continuous for all x 6= π/2 + kπ, k ∈ Z.

Solution i) Let a ∈ R be given. We know that cos x is continuous
at a if, and only if, cos (x+ a) is continuous at x = 0. Thus we need
examine

lim
x→0

cos (x+ a) = lim
x→0

(cosx cos a− sin x sin a)

by the assumption in the question,

=
(

lim
x→0

cos x
)

cos a−
(

lim
x→0

sin x
)

sin a

by the Product and Sum Rules for limits,

= 1× cos a− 0× sin a

= cos a = cos (0 + a) .

Thus cos (x+ a) is continuous at x = 0 and hence cosx is continuous
at a. True for all a ∈ R means cos is continuous on R.
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ii) Let a 6= π/2 + kπ for any k ∈ Z be given. Then

lim
x→a

tan x = lim
x→a

sin x

cos x
=

limx→a sin x

limx→a cos x

by the Limit Law for Quotients. This is allowable since both lim-
its exist (because sin and cos are everywhere continuous) and further
limx→a cos x = cos a 6= 0 since a 6= π/2 + kπ for any k ∈ Z. Thus

lim
x→a

tan x =
limx→a sin x

limx→a cos x
=

sin a

cos a
= tan a.

Since the limit of tan at a equals the value of tan at a we have verified
the definition that tan is continuous at a. Yet a was arbitrary subject
to being not of the form π/2 + kπ for any k ∈ Z, therefore tan is
continuous for all x 6= π/2 + kπ for any k ∈ Z.

6. Show that the hyperbolic functions sinh x, cosh x and tanh x are con-
tinuous on R.

Solution Recall that

sinh x =
ex − e−x

2
, cosh x =

ex + e−x

2
and tanh x =

ex − e−x

ex + e−x
.

We know that ex is continuous on R as is thus e−x, either by the
Quotient Rule since e−x = 1/ex and ex 6= 0 or by the Composition
Rule x 7→ −x 7→ e−x. Thus sinh x and cosh x are continuous on R by
the Sum Rule.

For tanh x we use the Quotient Rule observing that ex + e−x is never
zero.

Composite Rule

7. i) State the Composite Rule for functions.

Evaluate

lim
x→0

exp

(

sin x

x

)

.
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ii) State the Composite Rule for continuous functions.

Prove that
∣

∣

∣

∣

x+ 2

x2 + 1

∣

∣

∣

∣

is continuous on R.

Solution Composite Rule for functions. Assume that g is defined

on a deleted neighbourhood of a ∈ R and limx→a g (x) = L exists.

Assume that f is defined on a neighbourhood of L and is continuous

there. Then

lim
x→a

f(g (x)) = f
(

lim
x→a

g (x)
)

. (2)

i) Let

g (x) =
sin x

x
and f(x) = exp (x) = ex.

Then g is defined on R \ {0} and limx→0 g (x) exists, with value 1.
Further f is defined on all of R and is continuous at 1 = limx→0 g (x).
Thus we can apply the Composite Rule for functions to say

lim
x→0

exp

(

sin x

x

)

= lim
x→0

f(g (x)) = f
(

lim
x→0

g (x)
)

= exp

(

lim
x→0

sin x

x

)

= exp (1)

= e.

ii) Composite Rule for Continuous functions. Assume that g
is defined on a neighbourhood of a ∈ R and is continuous there and
assume that f is defined on a neighbourhood of g (a) and is continuous
there, then f ◦ g is continuous at a.

Let

g (x) =
x+ 2

x2 + 1
and f(x) = |x| .

We have seen in Questions 4i and 2 on that both g and f are continuous
on all of R. Hence by the Composite Rule for continuous functions we
deduce that

f(g (x)) =

∣

∣

∣

∣

x+ 2

x2 + 1

∣

∣

∣

∣

is continuous at every a ∈ R, i.e. is continuous on R.
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